OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 4. In other words, any prime p > 7 has a primitive root g < p of the form k*(k+1).
We have verified this for all n = 5, ..., 2*10^5.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(9) = 1 since 4*5 = 20 is a primitive root modulo prime(9) = 23.
a(10) = 1 since 1*2 = 2 is a primitive root modulo prime(10) = 29.
a(11) = 1 since 3*4 = 12 is a primitive root modulo prime(11) = 31.
MATHEMATICA
f[k_]:=f[k]=k(k+1)
dv[n_]:=dv[n]=Divisors[n]
Do[m=0; Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; m=m+1; Label[aa]; Continue, {k, 1, (Sqrt[4*Prime[n]-3]-1)/2}]; Print[n, " ", m]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 23 2014
STATUS
approved