OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's Constant, p. 123.
LINKS
M. W. Coffey, Summatory relations and prime products for the Stieltjes constants, and other related results, arXiv:1701.07064 (2017) Proposition 9.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 103.
Guillaume Melquiond, W. Georg Nowak, Paul Zimmermann, Numerical approximation of the Masser-Gramain constant to four decimal places, Mathematics of Computation, Volume 82, Number 282, April 2013, Pages 1235-1246
Eric Weisstein's MathWorld, Sierpiński's Constant
Wikipedia, Sierpiński's Constant
FORMULA
S = gamma + beta'(1) / beta(1), where beta is Dirichlet's beta function.
S = log(Pi^2*exp(2*gamma) / (2*L^2)), where L is Gauss' lemniscate constant.
S = log(4*Pi^3*exp(2*gamma) / Gamma(1/4)^4), where gamma is Euler's constant and Gamma is Euler's Gamma function.
S = A086058 - 1, where A086058 is the conjectured (but erroneous!) value of Masser-Gramain 'delta' constant. [updated by Vaclav Kotesovec, Apr 27 2015]
S = 2*gamma + (4/Pi)*integral_{x>0} exp(-x)*log(x)/(1-exp(-2*x)) dx.
Sum_{k=1..n} r(k)/k = Pi*(log(n) + S) + O(n^(-1/2)).
EXAMPLE
0.822825249678847032995328716261464949475693118894850218393815613...
MATHEMATICA
S = Log[4*Pi^3*Exp[2*EulerGamma]/Gamma[1/4]^4]; RealDigits[S, 10, 104] // First
PROG
(PARI) log(agm(sqrt(2), 1)^2/2) + 2*Euler \\ Charles R Greathouse IV, Nov 26 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Aug 08 2014
STATUS
approved