login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062089 Decimal expansion of Sierpinski's constant. 6
2, 5, 8, 4, 9, 8, 1, 7, 5, 9, 5, 7, 9, 2, 5, 3, 2, 1, 7, 0, 6, 5, 8, 9, 3, 5, 8, 7, 3, 8, 3, 1, 7, 1, 1, 6, 0, 0, 8, 8, 0, 5, 1, 6, 5, 1, 8, 5, 2, 6, 3, 0, 9, 1, 7, 3, 2, 1, 5, 4, 4, 9, 8, 7, 9, 7, 1, 9, 3, 2, 0, 4, 4, 0, 0, 1, 1, 5, 7, 1, 2, 0, 2, 1, 1, 1, 1, 7, 7, 2, 4, 5, 2, 7, 0, 6, 4, 2, 8, 3, 0, 3, 1, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 122-126.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..5000

S. R. Finch, Sierpinski's Constant.

Simon Plouffe, Sierpinski Constant to 2000 digits

Eric Weisstein. Sierpinski Constant

Eric Weisstein's World of Mathematics, Sierpinski Constant

FORMULA

-Pi*ln(Pi)+2*Pi*gamma+4*Pi*log(GAMMA(3/4)).

EXAMPLE

2.5849817595792532170658935873831711600880516518526309173215...

MATHEMATICA

K=-Pi Log[Pi]+2 Pi EulerGamma+4 Pi Log[Gamma[3/4]]; First@RealDigits[N[K, 105]](* Ant King, Mar 02 2013 *)

PROG

(PARI) -Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4))

(PARI) { default(realprecision, 5080); x=-Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062089.txt", n, " ", d)) } [Harry J. Smith, Aug 01 2009]

CROSSREFS

Cf. A062083.

Sequence in context: A114550 A094001 A020859 * A011201 A201772 A196605

Adjacent sequences:  A062086 A062087 A062088 * A062090 A062091 A062092

KEYWORD

cons,easy,nonn

AUTHOR

Jason Earls (zevi_35711(AT)yahoo.com), Jun 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 25 04:50 EDT 2014. Contains 244900 sequences.