

A062539


Decimal expansion of the Lemniscate constant or Gauss' constant.


9



2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Harry J. Smith, Table of n, a(n) for n=1,...,5000
Simon Plouffe, Lemniscate or Gauss constant
Simon Plouffe, Lemniscate constant or Gauss constant
Eric Weisstein's World of Mathematics, Lemniscate Constant


FORMULA

1/2*Pi^(3/2)/GAMMA(3/4)^2*2^(1/2).
A093341 multiplied by A002193.  R. J. Mathar, Aug 28 2013


EXAMPLE

2.622057554292119810464839589891119413682754951431623162816821703...


MATHEMATICA

RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (from Robert G. Wilson v May 19 2004)


PROG

(PARI) print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
(PARI) { allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(xd)*10; write("b062539.txt", n, " ", d)); } [From Harry J. Smith, Jun 20 2009]


CROSSREFS

Cf. A062540, A064853.
Sequence in context: A204935 A008905 A136760 * A171898 A110218 A057892
Adjacent sequences: A062536 A062537 A062538 * A062540 A062541 A062542


KEYWORD

cons,easy,nonn


AUTHOR

Jason Earls (zevi_35711(AT)yahoo.com), Jun 25 2001


STATUS

approved



