login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241015
Number of pairs of endofunctions f, g on [n] satisfying g(g(g(f(i)))) = f(i) for all i in [n].
5
1, 1, 6, 141, 6184, 387545, 33404256, 3891981205, 592320594048, 113184611671473, 26327424526220800, 7302855260707822541, 2381136881374877847552, 901709366369630531857417, 392234247731566637785780224, 194028806625479344354551301125
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * A245958(n,k).
MAPLE
with(combinat): M:=multinomial:
b:= proc(n, k) local l, g; l, g:= [1, 3],
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
seq(a(n), n=0..20);
MATHEMATICA
multinomial[n_, k_] := n!/Times @@ (k!); M = multinomial; b[n_, k0_] := Module[{l, g}, l = {1, 3}; g[k_, m_, i_, t_] := g[k, m, i, t] = Module[{d, j}, d = l[[i]]; If[i==1, n^m, Sum[M[k, Join[{k-(d-t)*j}, Array[d-t&, j]]]/j!*(d-1)!^j *M[m, Join[{m-t*j}, Array[t&, j]]]*g[k-(d-t)*j, m-t*j, Sequence @@ If[d-t==1, {i-1, 0}, {i, t+1}]], {j, 0, Min[k/(d-t), If[t==0, Infinity, m/t]]}]]]; g[k0, n-k0, Length[l], 0]]; a[0] = 1; a[n_] := Sum[b[n, j]*StirlingS2[n, j]*Binomial[n, j]*j!, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 13 2017, translated from Maple *)
CROSSREFS
Column k=3 of A245980.
Sequence in context: A078450 A193502 A059488 * A245986 A225810 A067196
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 07 2014
STATUS
approved