login
A245986
Number of pairs of endofunctions f, g on [n] satisfying g^9(f(i)) = f(i) for all i in [n].
2
1, 1, 6, 141, 6184, 387545, 33404256, 3891981205, 592320594048, 128805405787953, 43012267760166400, 19329826195760619341, 10086545470056599549952, 5787171311384573282516617, 3623228151360430287454531584, 2480483584581055916081566933125
OFFSET
0,3
LINKS
MAPLE
with(combinat): M:=multinomial:
b:= proc(n, k) local l, g; l, g:= [1, 3, 9],
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
seq(a(n), n=0..20);
CROSSREFS
Column k=9 of A245980.
Sequence in context: A193502 A059488 A241015 * A225810 A067196 A286446
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 08 2014
STATUS
approved