The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286446 Number of non-equivalent ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles. 5
 0, 1, 6, 142, 1280, 7301, 29603, 96485, 266636, 652908, 1452054, 2992513, 5789499, 10629381, 18660890, 31530854, 51525116, 81772345, 126449707, 191075297, 282794784, 410784700, 586640186, 824912741, 1143620051, 1564946921, 2115898646, 2829194838, 3744093216, 4907506597 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,3 COMMENTS Rotations and reflections of tilings are not counted. If they are to be counted, see A286439. Tiles of the same size are indistinguishable. For an analogous problem concerning square tiles, see A279113. LINKS Heinrich Ludwig, Table of n, a(n) for n = 3..100 Heinrich Ludwig, Illustration of tiling a 5X5X5 area Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1). FORMULA a(n) = (n^8 -12*n^7 +6*n^6 +432*n^5 -1249*n^4 -5028*n^3 +21820*n^2 +12384*n -94000)/144 + IF(MOD(n, 2) = 1, -8*n^3 +72*n^2 -208*n +189)/24 + IF(MOD(n, 3) = 0, -n^2 +3*n +7)/9 for n >= 5. G.f.: x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3). - Colin Barker, May 12 2017 EXAMPLE There are 6 non-equivalent ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See illustration in links section. PROG (PARI) concat(0, Vec(x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3) + O(x^60))) \\ Colin Barker, May 12 2017 CROSSREFS Cf. A279113, A286439, A286443, A286444, A286445. Sequence in context: A245986 A225810 A067196 * A048863 A278356 A277419 Adjacent sequences:  A286443 A286444 A286445 * A286447 A286448 A286449 KEYWORD nonn,easy AUTHOR Heinrich Ludwig, May 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 00:05 EDT 2020. Contains 333392 sequences. (Running on oeis4.)