OFFSET
1,2
COMMENTS
Original definition: Sum of the second largest parts in the partitions of 4n into 4 parts with smallest part = 1 (see the example).
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
FORMULA
G.f.: x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 13 2014
EXAMPLE
For a(n) add the parts in the second columns.
13 + 1 + 1 + 1
12 + 2 + 1 + 1
11 + 3 + 1 + 1
10 + 4 + 1 + 1
9 + 5 + 1 + 1
8 + 6 + 1 + 1
7 + 7 + 1 + 1
11 + 2 + 2 + 1
10 + 3 + 2 + 1
9 + 1 + 1 + 1 9 + 4 + 2 + 1
8 + 2 + 1 + 1 8 + 5 + 2 + 1
7 + 3 + 1 + 1 7 + 6 + 2 + 1
6 + 4 + 1 + 1 9 + 3 + 3 + 1
5 + 5 + 1 + 1 8 + 4 + 3 + 1
7 + 2 + 2 + 1 7 + 5 + 3 + 1
5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1
4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1
3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1
1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1
4(1) 4(2) 4(3) 4(4) .. 4n
------------------------------------------------------------------------
1 8 31 80 .. a(n)
MAPLE
MATHEMATICA
c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[c[n], {n, 50}]
PROG
(PARI) Vec(x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 13 2014
(PARI) A240707(n)=sum(a=1, (4*n-1)\3, (4*n-1-a)\2*((4*n-1-a)\2+1)-a*(a-1))\2 \\ The summand is sum(b=a, (4*n-1-a)\2, b). - M. F. Hasler, Apr 17 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 10 2014
EXTENSIONS
Definition simplified by M. F. Hasler, Apr 17 2014
STATUS
approved