login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238784 Number of palindromic partitions of n whose least part has multiplicity 4. 4
0, 0, 0, 1, 0, 1, 1, 3, 1, 3, 3, 7, 4, 9, 6, 15, 10, 19, 15, 30, 21, 39, 30, 56, 41, 75, 58, 103, 77, 132, 106, 181, 139, 231, 185, 307, 241, 392, 314, 508, 406, 643, 523, 826, 665, 1037, 849, 1313, 1070, 1638, 1350, 2057, 1689, 2547, 2112, 3172, 2622, 3902 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Palindromic partitions are defined at A025065.

LINKS

Table of n, a(n) for n=1..58.

EXAMPLE

a(12) counts these 7 partitions (written as palindromes):  11811, 114411, 22422, 1124211, 3333, 1132311, 11222211.

MATHEMATICA

z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &]

Table[p[n, 1], {n, 1, 12}]

t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *)

Table[p[n, 2], {n, 1, 12}]

t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *)

Table[p[n, 3], {n, 1, 12}]

t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *)

Table[p[n, 4], {n, 1, 12}]

t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *)

(* Peter J. C. Moses, Mar 03 2014 *)

CROSSREFS

Cf. A025065, A238781, A238782, A238783, A238779.

Sequence in context: A151837 A163381 A160123 * A147610 A238313 A163270

Adjacent sequences:  A238781 A238782 A238783 * A238785 A238786 A238787

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 15:27 EDT 2019. Contains 323444 sequences. (Running on oeis4.)