OFFSET
1,6
COMMENTS
Palindromic partitions are defined at A025065.
EXAMPLE
a(8) counts these partitions (each written as a palindrome): 44, 323, 1331, 112211.
MATHEMATICA
z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &]
Table[p[n, 1], {n, 1, 12}]
t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *)
Table[p[n, 2], {n, 1, 12}]
t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *)
Table[p[n, 3], {n, 1, 12}]
t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *)
Table[p[n, 4], {n, 1, 12}]
t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *)
(* Peter J. C. Moses, Mar 03 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 05 2014
STATUS
approved