This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025065 Number of palindromic partitions of n. 24
 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS That is, the number of partitions of n into parts which can be listed in palindromic order. Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - T. D. Noe, Aug 05 2005 Also, partial sums of A035363. a(n) = A000070(A004526(n)). - Reinhard Zumkeller, Jan 23 2010 Also number of partitions of n with at most one part occurring an odd number of times. - Reinhard Zumkeller, Dec 18 2013 The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - Clark Kimberling, Jan 20 2014 a(n) = number of partitions p of n such that 2*max(p) > n, for n >= 1; also, a(n+1) = number of partitions p of n such that 2*max(p) > n, for n >= 1. - Clark Kimberling, Apr 20 2014. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..100 FORMULA G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [Joerg Arndt, Mar 11 2014] EXAMPLE The partitions for the first few values of n are as follows: n: partitions .......................... number 1: 1 ................................... 1 2: 2 11 ................................ 2 3: 3 111 ............................... 2 4: 4 22 121 1111 ....................... 4 5: 5 131 212 11111 ..................... 4 6: 6 141 33 222 1221 11211 111111 ...... 7 7: 7 151 313 11311 232 21112 1111111 ... 7 From Reinhard Zumkeller, Jan 23 2010: (Start) Partitions into 1,2,4,6,... for the first values of n: 1: 1 ....................................... 1 2: 2 11 .................................... 2 3: 21 111 .................................. 2 4: 4 22 211 1111 ........................... 4 5: 41 221 2111 11111 ....................... 4 6: 6 42 4211 222 2211 21111 111111.......... 7 7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End) MATHEMATICA Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *) n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *) CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *) PROG (Haskell) a025065 = p (1:[2, 4..]) where    p [] _ = 0    p _  0 = 1    p ks'@(k:ks) m | m < k     = 0                   | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 12 2011 (Haskell) import Data.List (group) a025065 = length . filter (<= 1) .                    map (sum . map ((`mod` 2) . length) . group) . ps 1    where ps x 0 = [[]]          ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)] -- Reinhard Zumkeller, Dec 18 2013 (PARI) N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014 CROSSREFS Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010 Sequence in context: A064410 A266776 A062896 * A131524 A089075 A208963 Adjacent sequences:  A025062 A025063 A025064 * A025066 A025067 A025068 KEYWORD nonn AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Dec 29 2007 Prepended a(0)=1, added more terms, Joerg Arndt, Mar 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.