login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238781 Number of palindromic partitions of n whose least part has multiplicity 1. 4
1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 2, 6, 4, 6, 4, 10, 5, 12, 7, 16, 8, 20, 10, 27, 14, 32, 16, 44, 19, 53, 25, 69, 31, 84, 36, 108, 47, 130, 55, 167, 67, 202, 83, 252, 99, 305, 119, 380, 146, 456, 173, 564, 208, 676, 250, 826, 298, 991, 352, 1205, 424, 1435 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Palindromic partitions are defined at A025065.

LINKS

Table of n, a(n) for n=1..63.

EXAMPLE

a(11) counts these partitions (written as palindromes):  [11], [5,1,5], [4,3,4], [2,3,1,3,2].

MATHEMATICA

z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Min[#]] == k) &]

Table[p[n, 1], {n, 1, 12}]

t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A238781 *)

Table[p[n, 2], {n, 1, 12}]

t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238782 *)

Table[p[n, 3], {n, 1, 12}]

t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A238783 *)

Table[p[n, 4], {n, 1, 12}]

t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238784 *)

(* Peter J. C. Moses, Mar 03 2014 *)

CROSSREFS

Cf. A025065, A238782, A238783, A238784, A238779.

Sequence in context: A260412 A283451 A172245 * A319439 A051275 A025799

Adjacent sequences:  A238778 A238779 A238780 * A238782 A238783 A238784

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)