login
A234314
Let x(0)x(1)x(2)... x(q) denote the decimal expansion of n. Sequence lists the numbers n such that the suffix of decimal expansion x(1)x(2)... x(q) is the x(0)-th divisor of n.
1
11, 22, 25, 101, 202, 205, 304, 410, 425, 620, 735, 816, 832, 850, 975, 1001, 2002, 2005, 3004, 4010, 5025, 5125, 7035, 7175, 8016, 9024, 9036, 9040, 9075, 10001, 20002, 20005, 30004, 30025, 40010, 50008, 60016, 60020, 60050, 70625, 80010, 80016, 80128, 90036
OFFSET
1,1
EXAMPLE
735 is in the sequence because the divisors of 735 are {1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735} and 35 is the 7th divisor of 735.
MAPLE
with(numtheory):for n from 1 to 100000 do:x:=convert(n, base, 10):n1:=nops(x):y:=divisors(n):n2:=nops(y):a:=x[n1]: s:=sum('x[i]*10^(i-1) ', 'i'=1..n1-1):if n2>a and y[a]=s then printf(`%d, `, n):else fi:od:
CROSSREFS
Cf. A234315.
Sequence in context: A062055 A332516 A066500 * A258738 A160272 A164006
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 23 2013
STATUS
approved