login
A234315
Let x(0)x(1)x(2)... x(q) denote the decimal expansion of n. Sequence lists the numbers n such that the suffix of decimal expansion x(2)... x(q) is the p-th divisor of n where p is the prefix of decimal expansion x(0)x(1).
1
1280, 1872, 10020, 10050, 12040, 12500, 14200, 17200, 19250, 24150, 42336, 46920, 100020, 100032, 100125, 110176, 120160, 120200, 141250, 170040, 180300, 190152, 200800, 220200, 220880, 222500, 230100, 240640, 251250, 260100, 262000, 270180, 270750, 291450
OFFSET
1,1
EXAMPLE
1872 is in the sequence because the divisors of 1872 are {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 26, 36, 39, 48, 52, 72, 78, 104, 117, 144, 156, 208, 234, 312, 468, 624, 936, 1872} and 72 is the 18th divisor of 1872.
MAPLE
with(numtheory):for n from 1000 to 500000 do:x:=convert(n, base, 10):n1:=nops(x):y:=divisors(n):n2:=nops(y):a:=x[n1]*10+x[n1-1]: s:=sum('x[i]*10^(i-1) ', 'i'=1..n1-2):if n2>a and y[a]=s then printf(`%d, `, n):else fi:od:
CROSSREFS
Cf. A234314.
Sequence in context: A251894 A251791 A251784 * A251783 A224645 A237953
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Dec 23 2013
STATUS
approved