

A062055


Numbers with 5 odd integers in their Collatz (or 3x+1) trajectory.


5



11, 22, 23, 44, 45, 46, 88, 90, 92, 93, 176, 180, 181, 184, 186, 201, 352, 360, 362, 368, 369, 372, 373, 401, 402, 403, 704, 720, 724, 725, 736, 738, 739, 744, 746, 753, 802, 803, 804, 805, 806, 1408, 1440, 1448, 1450, 1472, 1476, 1477, 1478, 1488, 1492, 1493, 1506
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Collatz (or 3x+1) function is f(x) = x/2 if x is even, 3x+1 if x is odd.
The Collatz trajectory of n is obtained by applying f repeatedly to n until 1 is reached.
A078719(a(n)) = 5; A006667(a(n)) = 4.


REFERENCES

J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182185.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182185.
Eric Weisstein's World of Mathematics, Collatz Problem
Wikipedia, Collatz conjecture
Index entries for sequences related to 3x+1 (or Collatz) problem
Index entries for 2automatic sequences.


EXAMPLE

The Collatz trajectory of 11 is (11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which contains 5 odd integers.


MATHEMATICA

Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countOdd[lst_] := Length[Select[lst, OddQ]]; Select[Range[2000], countOdd[Collatz[#]] == 5 &] (* T. D. Noe, Dec 03 2012 *)


PROG

(Haskell)
import Data.List (elemIndices)
a062055 n = a062055_list !! (n1)
a062055_list = map (+ 1) $ elemIndices 5 a078719_list
 Reinhard Zumkeller, Oct 08 2011


CROSSREFS

Cf. A062052A062060.
Sequence in context: A297273 A296746 A095779 * A066500 A234314 A258738
Adjacent sequences: A062052 A062053 A062054 * A062056 A062057 A062058


KEYWORD

nonn


AUTHOR

David W. Wilson


STATUS

approved



