login
A066500
Numbers k such that 5 divides phi(k).
9
11, 22, 25, 31, 33, 41, 44, 50, 55, 61, 62, 66, 71, 75, 77, 82, 88, 93, 99, 100, 101, 110, 121, 122, 123, 124, 125, 131, 132, 142, 143, 150, 151, 154, 155, 164, 165, 175, 176, 181, 183, 186, 187, 191, 198, 200, 202, 205, 209, 211, 213, 217, 220, 225, 231, 241
OFFSET
1,1
COMMENTS
Related to the equation x^5 == 1 (mod k): sequence gives values of k such there are solutions 1 < x < k of x^5 == 1 (mod k).
If k is a term of this sequence, then G = <x, y|x^k = y^5 = 1, yxy^(-1) = x^r> is a non-abelian group of order 5k, where 1 < r < n and r^5 == 1 (mod k). For example, G can be the subgroup of GL(2, Z_k) generated by x = {{1, 1}, {0, 1}} and y = {{r, 0}, {0, 1}}. - Jianing Song, Sep 17 2019
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, May 23 2022
LINKS
Robert E. Dressler, A property of the phi and sigma_j functions, Compositio Mathematica, Vol. 31, No. 2 (1975), pp. 115-118.
FORMULA
a(n) are the numbers generated by 5^2 = 25 and all primes congruent to 1 mod 5 (A045453). Hence sequence gives all k such that k == 0 (mod A045453(n)) for some n > 1 or k == 0 (mod 25).
EXAMPLE
x^5 == 1 (mod 11) has solutions 1 < x < 11, namely {3,4,5,9}.
MATHEMATICA
Select[Range[250], Divisible[EulerPhi[#], 5] &] (* Amiram Eldar, May 23 2022 *)
PROG
(PARI) { n=0; for (m=1, 10^10, if (eulerphi(m)%5 == 0, write("b066500.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 18 2010
CROSSREFS
Column k=3 of A277915.
Sequence in context: A095779 A062055 A332516 * A234314 A258738 A160272
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 04 2002
EXTENSIONS
Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Extended by Ray Chandler, Nov 06 2003
STATUS
approved