login
A332516
Numbers k such that phi(k) == 10 (mod 12), where phi is the Euler totient function (A000010).
6
11, 22, 23, 46, 47, 59, 71, 83, 94, 107, 118, 131, 142, 166, 167, 179, 191, 214, 227, 239, 251, 262, 263, 311, 334, 347, 358, 359, 382, 383, 419, 431, 443, 454, 467, 478, 479, 491, 502, 503, 526, 563, 587, 599, 622, 647, 659, 683, 694, 718, 719, 743, 766, 827
OFFSET
1,1
COMMENTS
Dence and Pomerance showed that the asymptotic number of the terms below x is ~ (3/8) * x/log(x).
LINKS
Thomas Dence and Carl Pomerance, Euler's function in residue classes, in: K. Alladi, P. D. T. A. Elliott, A. Granville and G. Tenebaum (eds.), Analytic and Elementary Number Theory, Developments in Mathematics, Vol. 1, Springer, Boston, MA, 1998, pp. 7-20, alternative link.
EXAMPLE
23 is a term since phi(23) = 22 == 10 (mod 12).
MATHEMATICA
Select[Range[800], Mod[EulerPhi[#], 12] == 10 &]
PROG
(Magma) [k:k in [1..850]| EulerPhi(k) mod 12 eq 10]; // Marius A. Burtea, Feb 14 2020
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 14 2020
STATUS
approved