login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218991 Power floor sequence of 3+sqrt(10). 3
6, 36, 221, 1361, 8386, 51676, 318441, 1962321, 12092366, 74516516, 459191461, 2829665281, 17437183146, 107452764156, 662153768081, 4080375372641, 25144406003926, 154946811396196, 954825274381101, 5883898457682801 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n.  The present sequence is a(n,r), where r = 3+sqrt(10), and the limit p1(r) = 5.815421188487681054332319082...

See A218992 for the power floor function, p4.  For comparison with p1, we have limit(p4(r)/p1(r) = (3+sqrt(10))/5 = 1.23245553....

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..250

Index entries for linear recurrences with constant coefficients, signature (7,-5,-1).

FORMULA

a(n) = floor(r*a(n-1)), where r=3+sqrt(10), a(0) = floor(r).

a(n) = 7*a(n-1) - 5*a(n-2) - a(n-3).

G.f.:  (6 - 6*x - x^2)/(1 - 7*x + 5*x^2 + x^3).

a(n) = ((5+sqrt(10))*(3-sqrt(10))^(n+2)+(5-sqrt(10))*(3+sqrt(10))^(n+2)+2)/12. [Bruno Berselli, Nov 22 2012]

EXAMPLE

a(0) = floor(r) = 6, where r = 3+sqrt(10);

a(1) = floor(6*r) = 36;

a(2) = floor(36*r) = 221.

MATHEMATICA

x = 3 + Sqrt[10]; z = 30; (* z = # terms in sequences *)

f[x_] := Floor[x]; c[x_] := Ceiling[x];

p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];

p1[n_] := f[x*p1[n - 1]]

p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]

p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]

p4[n_] := c[x*p4[n - 1]]

t1 = Table[p1[n], {n, 0, z}]  (* A218991 *)

t2 = Table[p2[n], {n, 0, z}]  (* A005668 *)

t3 = Table[p3[n], {n, 0, z}]  (* A015451 *)

t4 = Table[p4[n], {n, 0, z}]  (* A218992 *)

PROG

(MAGMA) [IsZero(n) select Floor(r) else Floor(r*Self(n)) where r is 3+Sqrt(10): n in [0..20]]; // Bruno Berselli, Nov 22 2012

CROSSREFS

Cf. A214992, A005668, A015451, A218992.

Sequence in context: A004319 A129324 A180218 * A166748 A200378 A085687

Adjacent sequences:  A218988 A218989 A218990 * A218992 A218993 A218994

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Nov 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 22:19 EDT 2019. Contains 321382 sequences. (Running on oeis4.)