login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166748 E.g.f.: exp(6*arcsin(x)). 4
1, 6, 36, 222, 1440, 9990, 74880, 609390, 5391360, 51798150, 539136000, 6060383550, 73322496000, 951480217350, 13198049280000, 195053444556750, 3061947432960000, 50908949029311750, 894088650424320000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

exp(6*arcsin(1/2)) is Aleksandr Gelfond's constant exp(Pi).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..445

A. R. Povolotsky et al., With regards to OEIS A166748, sci.math.symbolic usenet group, 2009

FORMULA

Contribution from Alexander R. Povolotsky, Oct 24 2009: (Start)

a(n+2) = (n^2+36)*a(n), a(0)=1, a(1)=6.

The above recurrence leads to

a(n) = (3*2^n*gamma(-3*i+n/2)*gamma(3*i+n/2)*(cos((n*Pi)/2)+i*sin((n*Pi)/2))*sinh(((6-i*n)*Pi)/2))/Pi where "i" is imaginary unit. (End)

a(n) = 3*2^(n-1)*(exp(3*Pi)-(-1)^n*exp(-3*Pi))*|Gamma(n/2+3i)|^2/Pi. - R. J. Mathar and M. F. Hasler, Oct 25 2009

a(n) ~ 6 * (exp(3*Pi) - (-1)^n*exp(-3*Pi)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 06 2014

MATHEMATICA

Round[Table[3*2^(n-1)*(E^(3*Pi)-(-1)^n*E^(-3*Pi))*Abs[Gamma[n/2+3*I]]^2/Pi, {n, 0, 20}]] (* Vaclav Kotesovec, Nov 06 2014 *)

CoefficientList[Series[Exp[6*ArcSin[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Nov 06 2014 *)

PROG

(PARI) A166748(n)=round(norm(gamma(n/2+3*I))/Pi*if(n%2, cosh(3*Pi), sinh(3*Pi))*3<<n) \\ [M. F. Hasler, Oct 25 2009]

(PARI) a(n)=polcoeff(exp(6*asin(x)), n)*n!

(PARI) a(n)=(1+5*(n%2))*prod(k=0, n\2-1, (2*k+n%2)^2+36) [Jaume Oliver Lafont, Oct 28 2009]

CROSSREFS

Cf. A166741, A006228, A039661.

Sequence in context: A129324 A180218 A218991 * A200378 A085687 A242136

Adjacent sequences:  A166745 A166746 A166747 * A166749 A166750 A166751

KEYWORD

nonn

AUTHOR

Jaume Oliver Lafont, Oct 21 2009

EXTENSIONS

Minor edits by Vaclav Kotesovec, Nov 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 21:46 EST 2017. Contains 295141 sequences.