OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(8), and the limit p4(r) = (18 + 13*sqrt(2))/2 = 5.1978251872643193763459933449608678602008191971286...
See A218988 for the power floor function, p1(x); for comparison of p1 and p4, we have limit(p4(r)/p1(r) = 4 - sqrt(7).
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..250
Index entries for linear recurrences with constant coefficients, signature (5,0,-4).
FORMULA
a(n) = ceiling(x*a(n-1)), where x=2+sqrt(8), a(0) = ceiling(x).
a(n) = 5*a(n-1) - 4*a(n-3).
G.f.: (5 - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)). Corrected by Colin Barker, Nov 13 2017
a(n) = (1/7)*(-1 + (18-13*sqrt(2))*(2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n*(18+13*sqrt(2))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = ceiling(r) = 5, where r = 2+sqrt(8);
a(1) = ceiling(5*r) = 25; a(2) = ceiling(25*r) = 121.
MATHEMATICA
(See A218988.)
PROG
(PARI) Vec((5 - 4*x^2) / ((1 - x)*(1 - 4*x - 4*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 11 2012
STATUS
approved