OFFSET
0,2
FORMULA
Let q = x*A(x), then g.f. A(x) satisfies:
(1) A(x) = 1 + 6*Sum_{n>=1} q^n/(1 + q^n + q^(2*n)).
(2) A(x) = 1 + 6*Sum_{n>=1} q^(3*n-2)/(1-q^(3*n-2)) - q^(3*n-1)/(1-q^(3*n-1)).
a(n) = [x^n] H(x)^(n+1)/(n+1) where H(x) is the g.f. of A004016.
EXAMPLE
G.f.: A(x) = 1 + 6*x + 36*x^2 + 222*x^3 + 1446*x^4 + 10116*x^5 +...
where the g.f. satisfies the series:
A(x) = 1 + 6*x*A(x)/(1 + x*A(x) + x^2*A(x)^2) + 6*x^2*A(x)^2/(1 + x^2*A(x)^2 + x^4*A(x)^4) + 6*x^3*A(x)^3/(1 + x^3*A(x)^3 + x^6*A(x)^6) +...
The g.f. satisfies: A(x) = H(x*A(x)) where H(x) = A(x/H(x)) begins:
H(x) = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 +...+ A004016(n)*x^n +...
so that A(x) = (1/x)*Series_Reversion(x/H(x)).
The coefficients in powers of H(x) begin:
H^1: [(1), 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0,...];
H^2: [1,(12), 36, 12, 84, 72, 36, 96, 180, 12, 216, 144, 84,...];
H^3: [1, 18,(108), 234, 234, 864, 756, 900, 1836, 2178, 1296,...];
H^4: [1, 24, 216, (888), 1752, 3024, 7992, 8256, 14040,...];
H^5: [1, 30, 360, 2190, (7230), 14976, 32760, 72060, 92520,...];
H^6: [1, 36, 540, 4356, 20556, (60696), 137916, 325152,...];
H^7: [1, 42, 756, 7602, 46914, 187488, (531468), 1302132,...];
H^8: [1, 48, 1008, 12144, 92784, 473760, 1706544, (4818048),...]; ...
in which the coefficients in parenthesis form initial terms of this sequence:
[1/1, 12/2, 108/3, 888/4, 7230/5, 60696/6, 531468/7, 4818048/8,...].
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+6*sum(k=1, n, x^k*A^k/(1+x^k*A^k+x^(2*k)*A^(2*k)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+6*sum(k=1, n, (x*A)^(3*k-2)/(1-(x*A)^(3*k-2))-(x*A)^(3*k-1)/(1-(x*A)^(3*k-1)), x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 19 2011
STATUS
approved