login
A217677
Number of permutations in S_n containing an increasing subsequence of length 10.
3
1, 101, 6063, 284431, 11592572, 433386000, 15343169775, 524963196399, 17597634740010, 583499409451862, 19269396089593156, 636977450902768356, 21156201514272916444, 708006643310351350076, 23925259865186482138965, 817728884509460388159381
OFFSET
10,2
LINKS
FORMULA
a(n) = A214152(n,10) = A000142(n)-A072133(n) = A000142(n)-A214015(n,9).
MAPLE
b:= proc(n) option remember;
`if`(n<5, n!, ((-1110790863+(1520978576+(1772290401+(607308786+
(101671498+(9464664+(500874+(14124+165*n)*n)*n)*n)*n)*n)*n)*n)*b(n-1)
-(1129886062*n+559908333*n^2+111239576*n^3+10655238*n^4+8778*n^6
+491700*n^5 +353895381)*(n-1)^2*b(n-2) +(258011271+234066216*n
+58221266*n^2+5463876*n^3 +172810*n^4)*(n-1)^2*(n-2)^2*b(n-3)
-9*(4070430+1504292*n+117469*n^2)* (n-1)^2*(n-2)^2*(n-3)^2*b(n-4)
+893025*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*b(n-5)) /
((n+20)^2*(n+8)^2*(n+18)^2*(n+14)^2))
end:
a:= n-> n! -b(n):
seq(a(n), n=10..30);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 10 2012
STATUS
approved