login
A217678
Smallest k such that c*(c^2-1) divides k!, where c is the n-th perfect power.
0
5, 7, 6, 17, 13, 13, 31, 37, 14, 13, 41, 101, 61, 31, 127, 29, 26, 197, 43, 113, 61, 257, 34, 19, 43, 181, 401, 17, 97, 73, 53, 577, 313, 677, 73, 157, 421, 53, 62, 37, 41, 109, 89, 613, 1297, 37, 137, 38, 761, 1601, 82, 157, 353, 86, 149, 1013, 683, 73
OFFSET
2,1
COMMENTS
All the terms of the sequence appear to be prime or twice a prime.
EXAMPLE
5 is the smallest k such that 3, 4, 5 are divisors of k!.
MATHEMATICA
nn = 2500; pp = Union[Flatten[Table[n^i, {i, Prime[Range[PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]]; Table[f = n*(n^2 - 1); m = 1; While[Mod[m!, f] > 0, m++]; m, {n, pp}] (* T. D. Noe, Oct 15 2012 *)
CROSSREFS
Cf. A001597 (perfect powers).
Sequence in context: A348607 A200097 A314371 * A227452 A138306 A197257
KEYWORD
nonn
AUTHOR
Robin Garcia, Oct 10 2012
STATUS
approved