login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A017764 a(n) = binomial coefficient C(n,100). 2
1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171 (list; graph; refs; listen; history; text; internal format)
OFFSET

100,2

COMMENTS

More generally, the ordinary generating function for the binomial coefficients C(n,k) is x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Mar 21 2016

LINKS

Table of n, a(n) for n=100..117.

FORMULA

G.f.: x^100/(1 - x)^101. - Ilya Gutkovskiy, Mar 21 2016

MATHEMATICA

Table[Binomial[n, 100], {n, 100, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)

PROG

(Sage) [binomial(n, 100) for n in xrange(100, 115)] # Zerinvary Lajos, May 23 2009

(PARI) a(n)=binomial(n, 100) \\ Charles R Greathouse IV, Jun 28 2012

(Python)

A017764_list, m = [], [1]*101

for _ in range(10**2):

    A017764_list.append(m[-1])

    for i in range(100):

        m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

CROSSREFS

Cf. similar sequences of the binomial coefficients C(n,k): A000012 (k = 0), A001477 (k = 1), A000217 (k = 2), A000292 (k = 3), A000332 (k = 4), A000389 (k = 5), A000579-A000582 (k = 6..9) A001287 (k = 10), A001288 (k = 11), A010965-A011001 (k = 12..48), A017713-A017763 (k = 49..99), this sequence (k = 100).

Sequence in context: A027900 A166218 A167626 * A217677 A152756 A265172

Adjacent sequences:  A017761 A017762 A017763 * A017765 A017766 A017767

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 14:49 EST 2016. Contains 278781 sequences.