login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214015 Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 22
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

A(n,k) is also the sum of the squares of numbers of standard Young tableaux (SYT) of height <= k over all partitions of n.

This array is a larger and reflected version of A047888.

Column k>1 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - Vaclav Kotesovec, Sep 10 2014

LINKS

Alois P. Heinz, Antidiagonals n = 0..70, flattened

Wikipedia, Longest increasing subsequence problem

Wikipedia, Young tableau

EXAMPLE

A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321.  Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.

A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:

  +------+  +------+  +---------+  +---------+  +---------+  +------------+

  | 1  3 |  | 1  2 |  | 1  3  4 |  | 1  2  4 |  | 1  2  3 |  | 1  2  3  4 |

  | 2  4 |  | 3  4 |  | 2 .-----+  | 3 .-----+  | 4 .-----+  +------------+

  +------+  +------+  +---+        +---+        +---+

Square array A(n,k) begins:

  1,  1,   1,    1,    1,    1,    1,    1, ...

  0,  1,   1,    1,    1,    1,    1,    1, ...

  0,  1,   2,    2,    2,    2,    2,    2, ...

  0,  1,   5,    6,    6,    6,    6,    6, ...

  0,  1,  14,   23,   24,   24,   24,   24, ...

  0,  1,  42,  103,  119,  120,  120,  120, ...

  0,  1, 132,  513,  694,  719,  720,  720, ...

  0,  1, 429, 2761, 4582, 5003, 5039, 5040, ...

MAPLE

h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j

      +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

    end:

g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,

                 add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):

A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[ 1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Dec 09 2013, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A000012, A000108, A005802, A047889, A047890, A052399, A072131, A072132, A072133, A072167.

Differences between A000142 and columns k=0-9 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677.

Main diagonal and first lower diagonal give: A000142, A033312.

A(2n,n-1) gives A269042(n) for n>0.

Cf. A047887, A047888, A182172, A208447, A214152, A267479.

Sequence in context: A320955 A288942 A294220 * A137560 A201093 A131255

Adjacent sequences:  A214012 A214013 A214014 * A214016 A214017 A214018

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 12:01 EDT 2019. Contains 324352 sequences. (Running on oeis4.)