login
A213311
Numbers with exactly 4 nonprime substrings (substrings with leading zeros are considered to be nonprime).
1
103, 107, 111, 112, 115, 119, 122, 125, 129, 130, 134, 136, 138, 143, 147, 151, 152, 155, 159, 163, 170, 174, 176, 178, 183, 191, 192, 195, 199, 202, 203, 205, 207, 212, 215, 219, 220, 221, 224, 226, 228, 242, 245, 250
OFFSET
1,1
COMMENTS
The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings, and each 4-digit number has at least 1 nonprime substring. Thus, each 10-digit number has at least 5 nonprime substrings. Consequently, there is a boundary b, such that all numbers >= b have more than 4 nonprime substrings.
The first term is a(1)=103=A213302(4). The last term is a(653)=373379=A213300(4).
LINKS
EXAMPLE
a(1) = 103, since 103 has 4 nonprime substrings (0, 03, 1, 10).
a(653) = 373379, since there are 4 nonprime substrings (9, 33, 3379, 7337).
KEYWORD
nonn,fini,base
AUTHOR
Hieronymus Fischer, Aug 26 2012
STATUS
approved