login
A074675
Three-digit distinct-digit primes.
9
103, 107, 109, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 307, 317, 347, 349, 359, 367, 379, 389, 397, 401, 409, 419, 421, 431, 439, 457, 461, 463, 467, 479, 487, 491, 503, 509, 521, 523, 541
OFFSET
1,1
COMMENTS
There are exactly 97 three-digit primes with all distinct digits, so the sequence is finite.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..97 (full sequence)
EXAMPLE
a(1)=103 and a(97)=983 because these are the first and the last three-digit primes with all distinct digits.
MATHEMATICA
Select[Range[103, 983, 2], Length[Union[IntegerDigits[ # ]]]==3&&PrimeQ[ # ]&]
Select[Prime[Range[26, 168]], Length[Union[IntegerDigits[#]]]==3&] (* Harvey P. Dale, Jan 14 2020 *)
CROSSREFS
The first differences are in A074676. 4-digit distinct-digit primes are in A074673, see also A074674. 5-digit distinct-digit primes are in A074671, see also A074672. 6-digit distinct-digit primes are in A074669, see also A074670. 7-digit distinct-digit primes are in A074667, see also A074668. 8-digit distinct-digit primes are in A074665, see also A074666.
Sequence in context: A094095 A187882 A212542 * A235155 A167841 A213311
KEYWORD
fini,full,nonn,base
AUTHOR
Zak Seidov, Aug 30 2002
STATUS
approved