login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213300
Largest number with n nonprime substrings (substrings with leading zeros are considered to be nonprime).
49
373, 3797, 37337, 73373, 373379, 831373, 3733797, 3733739, 8313733, 9973331, 37337397, 82337397, 99733313, 99733317, 99793373, 733133733, 831373379, 997333137, 997337397, 997933739, 7331337337, 8313733797, 9733733797, 9973331373, 9979337397, 9982337397
OFFSET
0,1
COMMENTS
The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is nonempty and finite. Proof of existence: Define m(n):=2*sum_{j=i..k} 10^j, where k:=floor((sqrt(8n+1)-1)/2), i:= n - k(k+1)/2. For n=0,1,2,3,... the m(n) are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, ... . m(n) has k+1 digits and (k-i+1) 2’s. Thus the number of nonprime substrings of m(n) is ((k+1)(k+2)/2)-k-1+i=(k(k+1)/2)+i=n. This proves existence. Proof of finiteness: Each 4-digit number has at least 1 nonprime substring. Hence each 4*(n+1)-digit number has at least n+1 nonprime substrings. Consequently, there is a boundary b < 10^(4n+3) such that all numbers > b have more than n nonprime substrings. It follows that the set of numbers with n nonprime substrings is finite.
The following statements hold true:
For all n>=0 there are minimal numbers with n nonprime substrings (cf. A213302 - A213304).
For all n>=0 there are maximal numbers with n nonprime substrings (= A213300 = this sequence).
For all n>=0 there are minimal numbers with n prime substrings (cf. A035244).
The greatest number with n prime substrings does not exist. Proof: If p is a number with n prime substrings, than 10*p is a greater number with n prime substrings.
Comment from N. J. A. Sloane, Sep 01 2012: it is a surprise that any number greater than 373 has a nonprime substring!
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 0..32
FORMULA
a(n) >= A035244(A000217(A055642(a(n)))-n).
EXAMPLE
a(0)=373, since 373 is the greatest number such that all substrings are primes, hence it is the maximal number with 0 nonprime substrings.
a(1)=3797, since the only nonprime substring of 3797 is 9 and all greater numbers have more than 1 nonprime substrings.
a(2)=37337, since the nonprime substrings of 37337 are 33 and 7337 and all greater numbers have > 2 nonprime substrings.
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Aug 26 2012
STATUS
approved