|
|
A213321
|
|
Minimal prime with n prime substrings (substrings with leading zeros are considered to be nonprime).
|
|
46
|
|
|
2, 13, 23, 113, 137, 373, 1973, 1733, 1373, 11317, 17333, 31379, 37337, 113173, 211373, 313739, 337397, 1113173, 1137337, 2313797, 2337397, 11131733, 12337397, 11373379, 33133733, 111733373, 113137337, 123733739, 291733373, 113733797, 1173313373, 1137333137, 1237337393, 1137337973
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Hieronymus Fischer, Table of n, a(n) for n = 1..40
|
|
FORMULA
|
a(n) > 10^floor((sqrt(8*n+1)-1)/2).
min(a(k), k>=n-1) <= A079397(n-1), n>0.
a(n) >= A035244(n), n>0.
|
|
EXAMPLE
|
a(1)=2, since 2 is a prime has 1 prime substring (2).
a(2)=13, since 13 is prime and has 2 prime substrings (3 and 13)
|
|
CROSSREFS
|
Cf. A019546, A035232, A039996, A046034, A069489, A085823, A211681, A211682, A211684, A211685.
Cf. A035244, A079307, A213300 - A213320.
Sequence in context: A094535 A035244 A085822 * A093301 A079397 A118524
Adjacent sequences: A213318 A213319 A213320 * A213322 A213323 A213324
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Hieronymus Fischer, Aug 26 2012
|
|
STATUS
|
approved
|
|
|
|