OFFSET
0,3
COMMENTS
Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 35*x^4 + 181*x^5 + 1042*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 128*x^3 + 645*x^4 + 3462*x^5 + 19823*x^6 +...
1/A(-x*A(x)^6) = 1 + x + 5*x^2 + 20*x^3 + 108*x^4 + 638*x^5 + 3889*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 06 2012
STATUS
approved