OFFSET
0,3
COMMENTS
Compare the e.g.f. to:
(1) W(x) = exp(x/W(-x*W(x)^2)^1) when W(x) = Sum_{n>=0} (1*n+1)^(n-1)*x^n/n!.
(2) W(x) = exp(x/W(-x*W(x)^4)^2) when W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!.
(3) W(x) = exp(x/W(-x*W(x)^6)^3) when W(x) = Sum_{n>=0} (3*n+1)^(n-1)*x^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 61*x^3/3! + 1089*x^4/4! + 29081*x^5/5! +...
Related expansions:
A(x)^2 = 1 + 2*x + 12*x^2/2! + 152*x^3/3! + 2816*x^4/4! + 75152*x^5/5! +...
A(x)^5 = 1 + 5*x + 45*x^2/2! + 665*x^3/3! + 13745*x^4/4! + 380525*x^5/5! +...
1/A(-x*A(x)^5)^2 = 1 + 2*x + 16*x^2/2! + 206*x^3/3! + 4456*x^4/4! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^5)^2, begins:
log(A(x)) = x + 4*x^2/2! + 48*x^3/3! + 824*x^4/4! + 22280*x^5/5! + 774012*x^6/6! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(x/subst(A^2, x, -x*A^5+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Jun 05 2012
STATUS
approved