login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213233 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^10)^4). 8
1, 1, 5, 39, 345, 3512, 38431, 451620, 5587237, 72275004, 968509140, 13361356169, 188704259571, 2716467168169, 39716842554828, 588125693790055, 8800638181341593, 132838773216409675, 2019626662710709088, 30891440565153652705, 474899505740289874276 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. to:

(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).

(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).

(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).

(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

LINKS

Table of n, a(n) for n=0..20.

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 39*x^3 + 345*x^4 + 3512*x^5 + 38431*x^6 +...

Related expansions:

A(x)^10 = 1 + 10*x + 95*x^2 + 960*x^3 + 10095*x^4 + 111212*x^5 +...

1/A(-x*A(x)^10)^4 = 1 + 4*x + 30*x^2 + 256*x^3 + 2605*x^4 + 28484*x^5 +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^4, x, -x*subst(A^10, x, x+x*O(x^n)))) ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A213225, A213226, A213227, A213228, A213229, A213230, A213231, A213232.

Cf. A213091, A213092, A213093, A213094, A213095, A213096, A213098.

Cf. A213099, A213100, A213101, A213102, A213103, A213104, A213105.

Cf. A213108, A213109, A213110, A213111, A213112, A213113.

Sequence in context: A105426 A273019 A244039 * A115187 A266456 A247772

Adjacent sequences:  A213230 A213231 A213232 * A213234 A213235 A213236

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)