login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213229 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^7)^2). 8
1, 1, 3, 16, 93, 649, 4924, 40221, 344817, 3058115, 27798895, 257009431, 2404734586, 22679499148, 214947515333, 2042353663088, 19417906390395, 184458621283607, 1748712359825873, 16530801697256737, 155736745914813741, 1461877902947680987, 13674142992787617967 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. to:

(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).

(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).

(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).

(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

LINKS

Table of n, a(n) for n=0..22.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 93*x^4 + 649*x^5 + 4924*x^6 +...

Related expansions:

A(x)^7 = 1 + 7*x + 42*x^2 + 273*x^3 + 1862*x^4 + 13531*x^5 + 104062*x^6 +...

1/A(-x*A(x)^7)^2 = 1 + 2*x + 11*x^2 + 60*x^3 + 431*x^4 + 3302*x^5 + 27421*x^6 +..

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^7, x, x+x*O(x^n)))) ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A213225, A213226, A213227, A213228, A213230, A213231, A213232, A213233.

Cf. A213091, A213092, A213093, A213094, A213095, A213096, A213098.

Cf. A213099, A213100, A213101, A213102, A213103, A213104, A213105.

Cf. A213108, A213109, A213110, A213111, A213112, A213113.

Sequence in context: A099952 A305852 A221764 * A323968 A074555 A137644

Adjacent sequences:  A213226 A213227 A213228 * A213230 A213231 A213232

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 17:45 EST 2019. Contains 329287 sequences. (Running on oeis4.)