The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212213 Array read by antidiagonals: pi(n) + pi(k) - pi(n+k), where pi() = A000720. 8
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,23 COMMENTS It is conjectured that pi(x) + pi(y) >= pi(x+y) for 1 < y <= x. REFERENCES D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.5, p. 235. LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened P. Erdos and J. L. Selfridge, Complete prime subsets of consecutive integers. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 1--14. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. EXAMPLE Array begins: 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ... 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, ... 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, ... 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, ... 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, ... ... MATHEMATICA t[n_, k_] := PrimePi[n] + PrimePi[k] - PrimePi[n + k]; Table[t[n - k + 2, k], {n, 0, 15}, {k, 2, n}] // Flatten (* Jean-François Alcover, Dec 31 2012 *) CROSSREFS Cf. A000720, A047885, A047886, A060208, A212210-A212213. Sequence in context: A072731 A221169 A212212 * A214339 A129174 A129175 Adjacent sequences:  A212210 A212211 A212212 * A212214 A212215 A212216 KEYWORD nonn,tabl,nice AUTHOR N. J. A. Sloane, May 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 07:26 EDT 2021. Contains 343163 sequences. (Running on oeis4.)