login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221169 The infinite generalized Fibonacci word p^[5]. 5
0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Table of n, a(n) for n=0..87.

José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.

MAPLE

# sigma01f defined in A221166

A221169 := proc(n)

        sigma01f(n, 5) ;

end proc: # R. J. Mathar, Jul 09 2013

MATHEMATICA

fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];

fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[Fn[[n + 1]]]]]];

fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0];

sigma1f[n_, i_] := If[n == 0, 1, 1 + Mod[Sum[fmorph[j, i], {j, 0, n - 1}], 4]];

sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n - 1}], 4]]; a[n_] := sigma01f[n, 5]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 30 2017, after R. J. Mathar *)

CROSSREFS

Cf. A221166, A221167, A221168, A221170, A221171.

Sequence in context: A245715 A047885 A072731 * A212212 A212213 A214339

Adjacent sequences:  A221166 A221167 A221168 * A221170 A221171 A221172

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 17:25 EDT 2019. Contains 321422 sequences. (Running on oeis4.)