login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214339 Let S_m = concatenation of words 2(1)_2, 2(2)_2, 2(3)_2, ..., 2(m)_2, where (i)_2 denotes the binary expansion of i; then sequence is S_1, S_2, S_3, ... 2
2, 1, 2, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 2, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..126.

Daniel Goc, Luke Schaeffer and Jeffrey Shallit, The Subword Complexity of k-Automatic Sequences is k-Synchronized, arXiv 1206.5352, Jun 28 2012. See Example 3.

EXAMPLE

We have

S_1 = 2 1,

S_2 = 2 1, 2 1 0,

S_3 = 2 1, 2 1 0, 2 1 1,

S_4 = 2 1, 2 1 0, 2 1 1, 2 1 0 0,

... so the sequence begins

2 1, 2 1 2 1 0, 2 1 2 1 0 2 1 1, 2 1 2 1 0 2 1 1 2 1 0 0, ...

CROSSREFS

Sequence in context: A221169 A212212 A212213 * A129174 A129175 A063053

Adjacent sequences:  A214336 A214337 A214338 * A214340 A214341 A214342

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jul 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 12:20 EDT 2020. Contains 333241 sequences. (Running on oeis4.)