login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211971
Column 0 of square array A211970 (in which column 1 is A000041).
19
1, 1, 2, 4, 6, 10, 16, 24, 36, 54, 78, 112, 160, 224, 312, 432, 590, 802, 1084, 1452, 1936, 2568, 3384, 4440, 5800, 7538, 9758, 12584, 16160, 20680, 26376, 33520, 42468, 53644, 67552, 84832, 106246, 132706, 165344, 205512, 254824, 315256, 389168, 479368
OFFSET
0,3
COMMENTS
Partial sums give A015128. - Omar E. Pol, Jan 09 2014
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(n))*Pi / (16*n^(3/2)) * (1 - (3/Pi + Pi/4)/sqrt(n) + (3/2 + 3/Pi^2+ Pi^2/24)/n). - Vaclav Kotesovec, Oct 25 2016, extended Nov 04 2016
G.f.: (1 - x)/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Mar 05 2018
MATHEMATICA
Flatten[{1, Differences[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 60}]]}] (* Vaclav Kotesovec, Oct 25 2016 *)
CoefficientList[Series[(1 - x)/EllipticTheta[4, 0, x], {x, 0, 43}], x] (* Robert G. Wilson v, Mar 06 2018 *)
PROG
(GW-BASIC)' A program with two A-numbers:
10 Dim A008794(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 43: For j = 1 to n
30 If A008794(j+1) <= n then a(n) = a(n) + A057077(j-1)*a(n - A008794(j+1))
40 Next j: Print a(n-1); : Next n
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 10 2012
STATUS
approved