login
A196933
Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843.
14
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 195, 197, 203, 216, 242, 281
OFFSET
0,11
COMMENTS
Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13], [35, 35, 35, 35], [86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(11*k))*(1 - x^(11*k-1))*(1 - x^(11*k-10))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/11)) / (8*sin(Pi/11)*n). - Vaclav Kotesovec, Aug 14 2017
MATHEMATICA
T := Product[1/((1 - x^(11*k))*(1 - x^(11*k - 1))*(1 - x^(11*k - 10))), {k, 1, 70}]; a:= CoefficientList[Series[T, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)
PROG
(GW-BASIC) ' A program with two A-numbers:
10 Dim A195313(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 66: For j = 1 to n
30 If A195313(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195313(j))
40 Next j: Print a(n-1); : Next n
50 'Omar E. Pol, Jun 10 2012
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 07 2011
EXTENSIONS
More terms from Omar E. Pol, Jun 10 2012
STATUS
approved