The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195825 Square array T(n,k) read by antidiagonals, n>=0, k>=1, which arises from a generalization of Euler's Pentagonal Number Theorem. 38
 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 7, 3, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 15, 5, 3, 1, 1, 1, 1, 1, 22, 7, 4, 2, 1, 1, 1, 1, 1, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1, 56, 16, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 77, 21, 10, 4 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS In the infinite square array the column k is related to the generalized m-gonal numbers, where m = k+4. For example: the first column is related to the generalized pentagonal numbers A001318. The second column is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on... (see the program in which A195152 is a table of generalized m-gonal numbers). In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041 (see below the first row of the table): ======================================================== .                                          Column k of .                                          this square .       Generalized   Triangle  Triangle   array A195825 k    m    m-gonal       "A"       "B"      [row sums of .         numbers                          triangle "B" .                                          with a(0)=1] ======================================================== 1    5    A001318     A195310   A175003      A000041 2    6    A000217     A195826   A195836      A006950 3    7    A085787     A195827   A195837      A036820 4    8    A001082     A195828   A195838      A195848 5    9    A118277     A195829   A195839      A195849 6   10    A074377     A195830   A195840      A195850 7   11    A195160     A195831   A195841      A195851 8   12    A195162     A195832   A195842      A195852 9   13    A195313     A195833   A195843      A196933 10  14    A195818     A210944   A210954      A210964 ... It appears that column 2 of the square array is A006950. It appears that column 3 of the square array is A036820. Conjecture: if k is odd then column k contains (k+1)/2 plateaus whose levels are the first (k+1)/2 terms of A210843 and whose lengths are k+1, k-1, k-3, k-5,... 2. Otherwise, if k is even then column k contains k/2 plateaus whose levels are the first k/2 terms of A210843 and whose lengths are k+1, k-1, k-3, k-5,... 3. The sequence A210843 gives the levels of the plateaus of column k, when k -> infinity. For the visualization of the plateaus see the graph of a column, for example see the graph of A210964. - Omar E. Pol, Jun 21 2012 LINKS L. Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005. Eric Weisstein's World of Mathematics, Pentagonal Number Theorem Wikipedia, Pentagonal number theorem FORMULA Column k is asymptotic to exp(Pi*sqrt(2*n/(k+2))) / (8*sin(Pi/(k+2))*n). - Vaclav Kotesovec, Aug 14 2017 EXAMPLE Array begins: 1,    1,  1,  1,  1,  1,  1,  1,  1,  1,... 1,    1,  1,  1,  1,  1,  1,  1,  1,  1,... 2,    1,  1,  1,  1,  1,  1,  1,  1,  1,... 3,    2,  1,  1,  1,  1,  1,  1,  1,  1,... 5,    3,  2,  1,  1,  1,  1,  1,  1,  1,... 7,    4,  3,  2,  1,  1,  1,  1,  1,  1,... 11,   5,  4,  3,  2,  1,  1,  1,  1,  1,... 15,   7,  4,  4,  3,  2,  1,  1,  1,  1,... 22,  10,  5,  4,  4,  3,  2,  1,  1,  1,... 30,  13,  7,  4,  4,  4,  3,  2,  1,  1,... 42,  16, 10,  5,  4,  4,  4,  3,  2,  1,... 56,  21, 12,  7,  4,  4,  4,  4,  3,  2,... 77,  28, 14, 10,  5,  4,  4,  4,  4,  3,... 101, 35, 16, 12,  7,  4,  4,  4,  4,  4,... 135, 43, 21, 13, 10,  5,  4,  4,  4,  4,... 176, 55, 27, 14, 12,  7,  4,  4,  4,  4,... ... Column 1 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11... The column contains only one plateau: [1, 1] which has level 1 and length 2. Column 3 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10... The column contains two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. Column 6 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3. PROG (GWbasic)' A program (with two A-numbers) for the table of example section. 10 DIM A057077(100), A195152(15, 10), T(15, 10) 20 FOR k = 1 TO 10   'Column 1-10 30   T(0, k) = 1     'Row 0 40   FOR n = 1 TO 15 'Rows 1-15 50     FOR j = 1 TO n 60       IF A195152(j, k) <= n THEN T(n, k) = T(n, k) + A057077(j-1) * T(n - A195152(j, k), k) 70     NEXT j 80   NEXT n 90 NEXT k 100 FOR n = 0 TO 15 110   FOR j = 1 TO 10 120     PRINT T(n, k); 130   NEXT k 140   PRINT 150 NEXT n 160 END ' Omar E. Pol, Jun 18 2012 CROSSREFS Columns (1-10): A000041, A006950, A036820, A195848, A195849, A195850, A195851, A195852, A196933, A210964. For another version see A211970. Cf. A057077, A195152, A210843. Sequence in context: A109626 A182285 A160182 * A098824 A181651 A124032 Adjacent sequences:  A195822 A195823 A195824 * A195826 A195827 A195828 KEYWORD nonn,tabl AUTHOR Omar E. Pol, Sep 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 05:38 EST 2020. Contains 332115 sequences. (Running on oeis4.)