OFFSET
0,12
COMMENTS
Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13, 13], [35, 35, 35, 35, 35], [86, 86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..3000 from Vaclav Kotesovec)
Vaclav Kotesovec, Graph - The asymptotic ratio
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 / f(-x, -x^11) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 10 2015
Partitions of n into parts of the form 12*k, 12*k+1, 12*k+11. - Michael Somos, Jan 10 2015
Euler transform of period 12 sequence [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...]. - Michael Somos, Jan 10 2015
G.f.: Product_{k>0} 1 / ((1 - x^(12*k)) * (1 - x^(12*k - 1)) * (1 - x^(12*k - 11))).
Convolution inverse of A247133.
a(n) ~ sqrt(2)*(1+sqrt(3)) * exp(Pi*sqrt(n/6)) / (8*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284372(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
a(n) = a(n-1) + a(n-11) - a(n-14) - a(n-34) + + - - (with the convention a(n) = 0 for negative n), where 1, 11, 14, 34, ... is the sequence of generalized 14-gonal numbers A195818. - Peter Bala, Dec 10 2020
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1 / ((1 - x^(12*k)) * (1 - x^(12*k-1)) * (1 - x^(12*k-11))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 16 2012
STATUS
approved