login
A210964
Column 10 of square array A195825. Also column 1 of triangle A210954. Also 1 together with the row sums of triangle A210954.
16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 194, 195
OFFSET
0,12
COMMENTS
Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13, 13], [35, 35, 35, 35, 35], [86, 86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..3000 from Vaclav Kotesovec)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 / f(-x, -x^11) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 10 2015
Partitions of n into parts of the form 12*k, 12*k+1, 12*k+11. - Michael Somos, Jan 10 2015
Euler transform of period 12 sequence [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...]. - Michael Somos, Jan 10 2015
G.f.: Product_{k>0} 1 / ((1 - x^(12*k)) * (1 - x^(12*k - 1)) * (1 - x^(12*k - 11))).
Convolution inverse of A247133.
a(n) ~ sqrt(2)*(1+sqrt(3)) * exp(Pi*sqrt(n/6)) / (8*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284372(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
a(n) = a(n-1) + a(n-11) - a(n-14) - a(n-34) + + - - (with the convention a(n) = 0 for negative n), where 1, 11, 14, 34, ... is the sequence of generalized 14-gonal numbers A195818. - Peter Bala, Dec 10 2020
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1 / ((1 - x^(12*k)) * (1 - x^(12*k-1)) * (1 - x^(12*k-11))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
PROG
(GW-BASIC)' A program with two A-numbers:
10 Dim A195818(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 67: For j = 1 to n
30 If A195818(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195818(j))
40 Next j: Print a(n-1); : Next n
50 End
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 16 2012
STATUS
approved