login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209668 a(n) = count of monomials, of degree k = n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n. 10
1, 1, 7, 55, 631, 8001, 130453, 2323483, 48916087, 1129559068, 29442232007, 835245785452, 26113646252773, 880685234758941, 32191922753658129, 1259701078978200555, 52802268925363689079, 2352843030410455053891, 111343906794849929711260, 5567596199767400904172045 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the number of partitions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order. a(2) = 7: 2aa, 2ab, 2bb, 1a1a, 1a1b, 1b1a, 1b1b. - Alois P. Heinz, Aug 30 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..386

Wikipedia, Symmetric Polynomials

FORMULA

a(n) ~ c * n^n, where c = A247551 = Product_{k>=2} 1/(1-1/k!) = 2.529477472... . - Vaclav Kotesovec, Nov 15 2016

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))

    end:

a:= n-> b(n$3):

seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015

MATHEMATICA

h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr /@ Table[(h[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]

b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, k] * Binomial[i+k-1, k-1]^j, {j, 0, n/i}]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Jan 15 2016, after Alois P. Heinz *)

CROSSREFS

Cf. A209664-A209673.

Main diagonal of A209666 and A261718.

Cf. A261783.

Sequence in context: A318580 A054910 A028562 * A180829 A227544 A094656

Adjacent sequences:  A209665 A209666 A209667 * A209669 A209670 A209671

KEYWORD

nonn

AUTHOR

Wouter Meeussen, Mar 11 2012

EXTENSIONS

a(0)=1 prepended and a(11)-a(19) added by Alois P. Heinz, Aug 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 02:18 EDT 2019. Contains 328244 sequences. (Running on oeis4.)