login
A209668
a(n) = count of monomials, of degree k = n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
10
1, 1, 7, 55, 631, 8001, 130453, 2323483, 48916087, 1129559068, 29442232007, 835245785452, 26113646252773, 880685234758941, 32191922753658129, 1259701078978200555, 52802268925363689079, 2352843030410455053891, 111343906794849929711260, 5567596199767400904172045
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order. a(2) = 7: 2aa, 2ab, 2bb, 1a1a, 1a1b, 1b1a, 1b1b. - Alois P. Heinz, Aug 30 2015
LINKS
FORMULA
a(n) ~ c * n^n, where c = A247551 = Product_{k>=2} 1/(1-1/k!) = 2.529477472... . - Vaclav Kotesovec, Nov 15 2016
a(n) = [x^n] Product_{k>=1} 1 / (1 - binomial(k+n-1,n-1)*x^k). - Ilya Gutkovskiy, May 09 2021
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015
MATHEMATICA
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr /@ Table[(h[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, k] * Binomial[i+k-1, k-1]^j, {j, 0, n/i}]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A209666 and A261718.
Cf. A261783.
Sequence in context: A318580 A054910 A028562 * A340028 A365030 A180829
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Mar 11 2012
EXTENSIONS
a(0)=1 prepended and a(11)-a(19) added by Alois P. Heinz, Aug 29 2015
STATUS
approved