This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209666 T(n,k) = count of degree k monomials in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n. 4
 1, 2, 7, 3, 18, 55, 5, 50, 216, 631, 7, 118, 729, 2780, 8001, 11, 301, 2621, 12954, 45865, 130453, 15, 684, 8535, 55196, 241870, 820554, 2323483, 22, 1621, 28689, 241634, 1307055, 5280204, 17353028, 48916087, 30, 3620, 91749, 1012196, 6783210, 32711022, 124991685, 401709720, 1129559068 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Rows n = 1..141, flattened Wikipedia, Symmetric Polynomials EXAMPLE Table starts as:   1;   2,   7;   3,  18, 55;   5,  50, 216,  631;   7, 118, 729, 2780, 8001; MAPLE b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))     end: T:= (n, k)-> b(n\$2, k): seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Mar 04 2016 MATHEMATICA h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}] CROSSREFS Main diagonal is A209668; row sums are A209667. Sequence in context: A076992 A138751 A112303 * A089124 A210662 A229610 Adjacent sequences:  A209663 A209664 A209665 * A209667 A209668 A209669 KEYWORD nonn,tabl AUTHOR Wouter Meeussen, Mar 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 19:57 EST 2019. Contains 319350 sequences. (Running on oeis4.)