login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209664 T(n,k) = count of degree k monomials in the power sum symmetric polynomials p(mu,k) summed over all partitions mu of n. 10
1, 2, 6, 3, 14, 39, 5, 34, 129, 356, 7, 74, 399, 1444, 4055, 11, 166, 1245, 5876, 20455, 57786, 15, 350, 3783, 23604, 102455, 347010, 983535, 22, 746, 11514, 94852, 513230, 2083902, 6887986, 19520264, 30, 1546, 34734, 379908, 2567230, 12505470, 48219486, 156167944, 441967518 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Wikipedia, Symmetric Polynomials

EXAMPLE

Table starts as:

:  1;

:  2,   6;

:  3,  14,   39;

:  5,  34,  129,  356;

:  7,  74,  399, 1444,  4055;

: 11, 166, 1245, 5876, 20455, 57786;

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))

    end:

T:= (n, k)-> b(n$2, k):

seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 24 2016

MATHEMATICA

p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}]; p[par_?PartitionQ, v_] := Times @@ (p[#, v] & /@ par); Table[Tr[(p[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 11}, {k, l}]

CROSSREFS

Main diagonal is A124577; row sums are A209665.

Sequence in context: A253258 A098810 A081469 * A072647 A100113 A300012

Adjacent sequences:  A209661 A209662 A209663 * A209665 A209666 A209667

KEYWORD

nonn,tabl

AUTHOR

Wouter Meeussen, Mar 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 14:06 EDT 2019. Contains 328017 sequences. (Running on oeis4.)