|
|
A209671
|
|
a(n) = count of monomials, of degree k=n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
|
|
6
|
|
|
1, 5, 37, 405, 5251, 84893, 1556535, 33175957, 785671039, 20841132255, 604829604655, 19236214748061, 661348833658423, 24554370466786319, 976242978063976162, 41477168810872793493, 1872694395510428040983, 89644070894632864643651, 4531712537608857605836563
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Peter J. Taylor, Table of n, a(n) for n = 1..100
Wikipedia, Symmetric Polynomials
|
|
FORMULA
|
Main diagonal of triangle A209669.
|
|
MATHEMATICA
|
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Tr /@ Table[(e[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]
|
|
CROSSREFS
|
Cf. A209664-A209673.
Sequence in context: A179923 A190628 A333285 * A173796 A292873 A161565
Adjacent sequences: A209668 A209669 A209670 * A209672 A209673 A209674
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Wouter Meeussen, Mar 11 2012
|
|
EXTENSIONS
|
More terms from Peter J. Taylor, Mar 02 2017
|
|
STATUS
|
approved
|
|
|
|