login
A209669
T(n,k) = count of degree k monomials in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
6
1, 1, 5, 1, 10, 37, 1, 21, 120, 405, 1, 42, 363, 1644, 5251, 1, 85, 1117, 6814, 27405, 84893, 1, 170, 3360, 27404, 138085, 514248, 1556535, 1, 341, 10164, 111045, 701960, 3145848, 11133493, 33175957, 1, 682, 30520, 445132, 3521405, 18956548, 78337448
OFFSET
1,3
COMMENTS
T(n,2) = A000975(n+1) because only partitions into parts of 1 and 2 contribute, so that T(n,2) = Sum_{k=0..floor(n/2)} 2^(n-2k). - Peter J. Taylor, Mar 01 2017
FORMULA
T(n,k) = Sum_{lambda} Product_{i} binomial(k, lambda_i) where the sum is over partitions of n. - Peter J. Taylor, Mar 01 2017
EXAMPLE
Table starts as
1;
1, 5;
1, 10, 37;
1, 21, 120, 405;
1, 42, 363, 1644, 5251;
...
For n = 2, k = 2 the partitions of n are 2 and 1+1, which correspond respectively to (xy) contributing 1 and (x+y)*(x+y) contributing 4 for a total of 5. - Peter J. Taylor, Mar 01 2017
MATHEMATICA
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Table[Tr[(e[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
PROG
(Python) # See Taylor link
CROSSREFS
Row sums are A209670, main diagonal is A209671.
Second column is A000975 offset by 1. - Peter J. Taylor, Mar 01 2017
Sequence in context: A116547 A013612 A112830 * A189745 A062967 A245211
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Mar 11 2012
STATUS
approved