login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204621
Triangle read by rows: coordinator triangle for lattice A*_n.
2
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 16, 6, 1, 1, 7, 22, 22, 7, 1, 1, 8, 29, 64, 29, 8, 1, 1, 9, 37, 93, 93, 37, 9, 1, 1, 10, 46, 130, 256, 130, 46, 10, 1, 1, 11, 56, 176, 386, 386, 176, 56, 11, 1, 1, 12, 67, 232, 562, 1024, 562, 232, 67, 12, 1
OFFSET
0,5
LINKS
J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A 453 (1997), 2369-2389.
Hidefumi Ohsugi, Akiyoshi Tsuchiya, The h∗-polynomials of locally anti-blocking lattice polytopes and their gamma-positivity, arXiv:1906.04719 [math.CO], 2019.
Charles M. Wang, Josephine Yu, Toric h-vectors and Chow Betti Numbers of Dual Hypersimplices, arXiv:1707.04581 [math.CO], 2017.
FORMULA
T(n, k) = Sum_{i=0..min(k,n-k)} binomial(n+1,i). [Wang and Yu, Theorem 4.1] - Eric M. Schmidt, Dec 07 2017
EXAMPLE
Triangle begins:
1
1 1
1 4 1
1 5 5 1
1 6 16 6 1
1 7 22 22 7 1
1 8 29 64 29 8 1
1 9 37 93 93 37 9 1
1 10 46 130 256 130 46 10 1
1 11 56 176 386 386 176 56 11 1
...
MATHEMATICA
T[n_, k_] := Sum[Binomial[n+1, i] , {i, 0, Min[k, n-k]}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
PROG
(GAP) Flat(List([0..10], n->List([0..n], k->Sum([0..Minimum(k, n-k)], i->Binomial(n+1, i))))); # Muniru A Asiru, Dec 14 2018
CROSSREFS
The triangle for Z^n is A007318, A_n is A008459, D_n is A108558, D*_n is A008518.
T(2n,n) gives A000302.
Sequence in context: A173118 A147289 A147566 * A146770 A143334 A156050
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 17 2012
STATUS
approved