login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204620 Numbers k such that 3*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m. 16
41, 209, 157169, 213321, 303093, 382449, 2145353, 2478785 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Terms are odd: by Morehead's theorem, 3*2^(2*n) + 1 can never divide a Fermat number.

No other terms below 7516000.

Is this sequence the same as "Numbers k such that 3*2^k + 1 is a factor of a Fermat number 2^(2^m) + 1 for some m"? - Arkadiusz Wesolowski, Nov 13 2018

Yes. The last sentence of Morehead's paper is: "It is easy to show that _composite_ numbers of the forms 2^kappa * 3 + 1, 2^kappa * 5 + 1 can not be factors of Fermat's numbers." - Jeppe Stig Nielsen, Jul 23 2019

LINKS

Table of n, a(n) for n=1..8.

Wilfrid Keller, Fermat factoring status

J. C. Morehead, Note on the factors of Fermat's numbers, Bull. Amer. Math. Soc., Volume 12, Number 9 (1906), pp. 449-451.

Eric Weisstein's World of Mathematics, Fermat Number

MATHEMATICA

lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 209, 2}]; lst

PROG

(PARI) isok(n) = my(p = 3*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018

CROSSREFS

Subsequence of A002253.

Cf. A000215, A039687, A057775, A057778, A201364, A226366.

Sequence in context: A142526 A088319 A297598 * A172085 A251094 A300464

Adjacent sequences:  A204617 A204618 A204619 * A204621 A204622 A204623

KEYWORD

nonn,hard,more

AUTHOR

Arkadiusz Wesolowski, Jan 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 04:10 EDT 2019. Contains 326109 sequences. (Running on oeis4.)