This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204620 Numbers k such that 3*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m. 16
 41, 209, 157169, 213321, 303093, 382449, 2145353, 2478785 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Terms are odd: by Morehead's theorem, 3*2^(2*n) + 1 can never divide a Fermat number. No other terms below 7516000. Is this sequence the same as "Numbers k such that 3*2^k + 1 is a factor of a Fermat number 2^(2^m) + 1 for some m"? - Arkadiusz Wesolowski, Nov 13 2018 Yes. The last sentence of Morehead's paper is: "It is easy to show that _composite_ numbers of the forms 2^kappa * 3 + 1, 2^kappa * 5 + 1 can not be factors of Fermat's numbers." - Jeppe Stig Nielsen, Jul 23 2019 LINKS Wilfrid Keller, Fermat factoring status J. C. Morehead, Note on the factors of Fermat's numbers, Bull. Amer. Math. Soc., Volume 12, Number 9 (1906), pp. 449-451. Eric Weisstein's World of Mathematics, Fermat Number MATHEMATICA lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[2, p]], AppendTo[lst, n]], {n, 7, 209, 2}]; lst PROG (PARI) isok(n) = my(p = 3*2^n + 1, z = znorder(Mod(2, p))); isprime(p) && ((z >> valuation(z, 2)) == 1); \\ Michel Marcus, Nov 10 2018 CROSSREFS Subsequence of A002253. Cf. A000215, A039687, A057775, A057778, A201364, A226366. Sequence in context: A142526 A088319 A297598 * A172085 A251094 A300464 Adjacent sequences:  A204617 A204618 A204619 * A204621 A204622 A204623 KEYWORD nonn,hard,more AUTHOR Arkadiusz Wesolowski, Jan 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 04:10 EDT 2019. Contains 326109 sequences. (Running on oeis4.)