login
A202934
Number of (n+3) X 6 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
1
104976, 153874, 225858, 330853, 481798, 695114, 991196, 1394929, 1936228, 2650602, 3579742, 4772133, 6283690, 8178418, 10529096, 13417985, 16937560, 21191266, 26294298, 32374405, 39572718, 48044602, 57960532, 69506993, 82887404
OFFSET
1,1
COMMENTS
Column 3 of A202939.
LINKS
FORMULA
Empirical: a(n) = (1/30)*n^6 + (16/5)*n^5 + (875/12)*n^4 + (2116/3)*n^3 + (103801/20)*n^2 + (407932/15)*n + 71809.
Conjectures from Colin Barker, Jun 03 2018: (Start)
G.f.: x*(104976 - 580958*x + 1353236*x^2 - 1692959*x^3 + 1197415*x^4 - 453495*x^5 + 71809*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=2:
..0..0..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..1..1....0..0..1..0..1..0....0..0..1..1..0..0....0..0..0..1..0..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..1..1..0..1....0..0..1..0..1..0
..0..0..1..0..1..0....0..0..1..1..1..1....0..0..1..0..0..1....0..0..1..0..0..0
..0..0..1..0..1..1....0..0..1..1..1..0....0..0..0..0..1..0....0..0..0..1..1..0
CROSSREFS
Cf. A202939.
Sequence in context: A186877 A304283 A138165 * A203822 A013889 A353553
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 26 2011
STATUS
approved