%I #9 Jun 03 2018 07:57:24
%S 104976,153874,225858,330853,481798,695114,991196,1394929,1936228,
%T 2650602,3579742,4772133,6283690,8178418,10529096,13417985,16937560,
%U 21191266,26294298,32374405,39572718,48044602,57960532,69506993,82887404
%N Number of (n+3) X 6 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
%C Column 3 of A202939.
%H R. H. Hardin, <a href="/A202934/b202934.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/30)*n^6 + (16/5)*n^5 + (875/12)*n^4 + (2116/3)*n^3 + (103801/20)*n^2 + (407932/15)*n + 71809.
%F Conjectures from _Colin Barker_, Jun 03 2018: (Start)
%F G.f.: x*(104976 - 580958*x + 1353236*x^2 - 1692959*x^3 + 1197415*x^4 - 453495*x^5 + 71809*x^6) / (1 - x)^7.
%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
%F (End)
%e Some solutions for n=2:
%e ..0..0..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
%e ..0..0..0..0..1..1....0..0..1..0..1..0....0..0..1..1..0..0....0..0..0..1..0..1
%e ..0..1..1..1..1..1....0..0..1..1..1..1....0..0..1..1..0..1....0..0..1..0..1..0
%e ..0..0..1..0..1..0....0..0..1..1..1..1....0..0..1..0..0..1....0..0..1..0..0..0
%e ..0..0..1..0..1..1....0..0..1..1..1..0....0..0..0..0..1..0....0..0..0..1..1..0
%Y Cf. A202939.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 26 2011