login
A202933
Number of (n+3) X 5 binary arrays with consecutive windows of four bits considered as a binary number nondecreasing in every row and column.
1
83521, 113856, 153874, 206145, 273683, 359970, 468980, 605203, 773669, 979972, 1230294, 1531429, 1890807, 2316518, 2817336, 3402743, 4082953, 4868936, 5772442, 6806025, 7983067, 9317802, 10825340, 12521691, 14423789, 16549516, 18917726
OFFSET
1,1
COMMENTS
Column 2 of A202939.
LINKS
FORMULA
Empirical: a(n) = (1/5)*n^5 + (31/2)*n^4 + (781/3)*n^3 + 2874*n^2 + (589559/30)*n + 60719.
Conjectures from Colin Barker, Jun 02 2018: (Start)
G.f.: x*(83521 - 387270*x + 723553*x^2 - 679679*x^3 + 320618*x^4 - 60719*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..1..1..1..0....1..1..1..1..1....0..1..1..0..1....0..1..0..1..0
..0..1..0..0..0....0..1..0..0..1....0..0..1..0..1....0..1..1..0..1
..1..1..1..1..1....0..0..0..1..0....0..0..1..0..1....0..0..0..0..0
..0..1..0..1..0....0..0..1..1..0....0..0..1..1..0....0..1..1..1..0
CROSSREFS
Cf. A202939.
Sequence in context: A233925 A032752 A104928 * A013885 A205197 A203395
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 26 2011
STATUS
approved